Agrivoltaics:

Integrating Solar Electricity Production with Agriculture, Grazing and Native Habitats

Photo: UW-Madison graduate students discuss rooftop agrivoltaics with researcher at University of Arizona School of Environment and Natural Resources 2 building, Tucson, Arizona USA. March 13, 2023. Photo: Josh Arnold

Josh Arnold, JD, MBA and Tom Bryan, Ph.D. University of Wisconsin – Madison 13 November 2023

Your Presenters

Josh Arnold, JD, MBA Project Manager, Solar Pilot Office of Sustainability University of Wisconsin – Madison

Energy Industry for 20+ years

Tom Bryan, Ph.D. Teaching Faculty Organic Agriculture and Agroecology University of Wisconsin – Madison

Vegetable farmer for 10+ years

Agenda

- UW-Madison
- Context
- What is Agrivoltaics?
- UW-Madison project and research
- Resources
- Discussion
- Information about UW– Madison Research labs

Photo: UW Madison campus and Lake Mendota (credit: Bryce Richter/UW-Madison)

University of Wisconsin–Madison

The University of Wisconsin– Madison is a public land– grant institution established in 1848.

UW-Madison is Wisconsin's flagship public university and a major research institution,

50,000 undergraduate, graduate and professional students from 116 countries

25,000 faculty and staff

Context

Total Area:

Türkiye is about **5x** size of State of Wisconsin, USA Source: mapfight.xyz

Agricultural Land Use:

Türkiye features about **4x** as much land use in use for agriculture 23,000,000 hectares (56,000,000 acres) v. 6,000,000 hectares (14,000,000 acres) Sources: statista.com; macrotrends.net, U.S. Department of Agriculture, National Agricultural Statistics Service, 2021)

Solar:

Türkiye has about **20x** as much solar now as Wisconsin - with both areas forecast for rapid increases in the next 5 years (10 GW and 4 GW, respectively)

Sources: International Energy Agency, RENEW Wisconsin, Public Service Commission of Wisconsin

What is Agrivoltaics?

Solar Configurations for Agrivoltaics

Fixed mount - (Alliant Energy, Fond du Lac, Wisconsin, USA)

Vertical Panels – Under Construction at University of Jordan (Photo: Dr. Osama Ayadi, School of Engineering, University of Jordan)

Single-axis tracker (Madison Gas and Electric Dane County Regional Airport Madison, Wisconsin, USA)

Elevated panels: Allow for yoga and recreation (Photo: Jack's Solar Garden, Longmont, Colorado, USA)

National Renewable Energy Laboratory: 5C's of Agrivoltaics Success

Climate – including soil and environmental conditions

Configurations – solar technology, design and layout

Crop Selection – cultivation methods, seed and vegetation design and management

Compatibility – flexibility to accommodate multiple uses

Collaboration – communications, working together

Academic and Industry Collaborators

THE UNIVERSITY IOWA STATE

EPCI **ELECTRIC POWER RESEARCH INSTITUTE**

International Collaboration in Agrivoltaics

RAWABIT ("Connections") Program of the U.S.-Jordanian University Cooperation Network

Agrivoltaics Pilot Project Team

UW-Madison

- Office of Sustainability
- Facilities Planning and Management
- Wisconsin Institute for Discovery
- Office of the Vice Chancellor for Research and Graduate Education
- College of Agriculture and Life Sciences
- Nelson Institute for Environmental Studies
- Division of Extension
- Students, Faculty and Staff

Investor-owned electric utility

Solar Development Services

Environmental Consultant

WEPA / EIA consultants

Key Activities

Campus Information Forum (April 2022)

Key Considerations:

- Project partners
- Aligned with our institutional mission
- Campus (student, staff, faculty) interest
- Finding the right location
- Financial and logistics planning

Integrated Design Site Visit (May 2022)

Aerial View – UW Kegonsa Agrivoltaics Project

(Early Site Concept - 2022)

Interior Parcel Location:

- South-facing slope ideally suited for solar
- Small, interior parcel (~4 hectares/10 acres) of 113 hectares/280 acres)
- Near existing facilities at UW Physical Sciences Lab
- Interior location shields view from roads; with visual buffers to be added
- Remaining area continues farming/recreation as before
- Environmental Impact Assessment resulted in finding of no significant impact (FONSI) to environment, wildlife, etc.
- Site impacts to be studied by researchers

Quick Facts:

- Alliant Energy leases land from UW-Madison to place utility-owned 2.25 MW solar
- Alliant Energy will build, own, and maintain the facility
- Clean energy is delivered to Alliant Energy distribution system powering local homes and businesses
- UW-Madison receives a monthly lease payment to be reinvested in sustainability initiatives; will retire Renewable Energy Certificates (RECs) from the project
- UW-Madison students, faculty and staff will use the facility for education and research purposes
- Demonstration to the greater public about opportunities for the co-location of agriculture and solar

Zone 2: Single-Axis Tracking

"torque tube" height 1.5 – 2.5 meters

200 kW planned

Sample Single-Axis Tracking array time-lapse with backtracking capabilities https://www.youtube.com/watch?v=YfbMDrpd4vw

Zone 3: Standard Fixed Tilt

1.0 – 2.5 meters

2000 kW planned

Pilot Project Timeline

(Schedule subject to change)

Examples of Proposed Research

- \checkmark Greater understanding of community concerns
- \checkmark Business models and innovation
- ✓ Soils
- ✓ Hydrology (runoff and groundwater, etc.)
- ✓ Temperature, humidity, wind speed
- \checkmark Vegetation and ground cover options
- Trade-offs between energy production and plant production
- Pollinator interactions
- \checkmark Wildlife, bird interactions
- ✓ Use of small stock animals to manage vegetation growth
- \checkmark Demonstration and outreach

Midwest USA agrivoltaics horticultural outlook

"Agriculture is all about context"

- Minimal vertical & horizontal access
- Support piles not always centered
- Maximum shading

Perhaps most suitable for pollinators, small animal grazing (my hypothesis)

- Moderate vertical & horizontal access
- Farmer-controlled horizontal access (planting, harvest)
- Support piles often centered

Perhaps most suitable for low-growing perennial crops (blueberry, strawberry, currant, honeyberry) or annual/perennial small grains (my hypothesis)

- Maximum vertical & horizontal access
- Support piles often centered
- Mid-summer shading minimized (Madison, WI USA – near 45°N latitude & ~150 frost free days)

Perhaps most suitable for annual vegetable production and large animal grazing (my hypothesis)

Goals: Inform, Engage, Inspire

Please contact us for more information Thank you!

Agrivoltaics Resources

Electric Power Research Institute, Power in Pollinators https://www.epri.com/pages/sa/pollinators

International Energy Agency, Photovoltaic Power Systems Programme https://iea-pvps.org/

InSPIRE, U.S. Department of Energy, National Renewable Energy Laboratory, https://openei.org/wiki/InSPIRE

National Center for Appropriate Technology, AgriSolar ClearingHouse <u>https://www.agrisolarclearinghouse.org/</u>

RENEW Wisconsin, https://www.renewwisconsin.org/solar-and-agricultural-land

Solar Farm Summit https://solarfarmsummit.com/

Please feel free to add your resource suggestions in today's chat!

Contact Information

Josh Arnold, JD, MBA

Campus Energy Advisor Office of Sustainability University of Wisconsin-Madison

josh.arnold@wisc.edu

www.sustainability.wisc.edu

Tom Bryan, Ph.D.

Teaching Faculty Department of Plant and Agroecosystems Science University of Wisconsin-Madison

tbryan@wisc.edu

www.pasdept.wisc.edu

Soil Sensing & Monitoring Lab @ UW-Madison Jingyi Huang, Assistant Professor, Department of Soil Science

Interests:

- Proximal and remote sensing
- Soil physics and process modeling
- Climate change
- Soil-human-environment interactions

Designing ecosystem restoration

Precision agriculture for improving crop production

Loheide Ecohydrology Group

Investigating the interactions between ecological and hydrological processes to make more sustainable connections between natural and built systems

- Numerical modeling
- Technology development

• Field methods

• Remote sensing

Kucharik Agroecology Lab @ UW-Madison

Investigating agroecosystems and finding ways to enhance the resiliency of ecosystems – and the services they provide – to drivers of global change.

Identify and quantify bidirectional feedbacks between land management, climate, and ecosystems Quantify the impacts of varied land management and a changing climate on the ecosystem services we derive from landscapes Support policy decisionmaking to help protect soils, water, and the climate system

Chris Kucharik Prof. of Agronomy and Environmental Studies

Agronomic productivity

Crop development and photosynthesis

Water use and water quality

Weather variability and climate change impacts

Ecometeorology Lab @ UW-Madison

Ankur Desai Professor of Atmospheric & Oceanic Sciences

Interests:

- Role of vegetation in climate and weather systems
- Improving models and forecasts of carbon and water cycling in ecosystems and atmosphere
- Observing land-atmosphere fluxes of heat, momentum, water, carbon dioxide, methane particularly with eddy covariance flux towers --->

Solar grazing recommendations for Wisconsin

Extension's mission is to connect people with the University of Wisconsin. We teach, learn, lead and serve, transforming lives and communities.

Diane Mayerfeld Sustainable Ag Coordinator, UW-Madison Extension Will Fulwider Regional Crops Educator, Dane & Dodge Co. Extension

Carolyn Ihde Small Ruminant Outreach Specialist Iowa State and UW-Madison Extension

Jason Cavadini Grazing Specialist, UW-Madison Extension

- The current, most practiced form of agrivoltaics is sheep grazing
- We lack research on forage (plants consumed by livestock) performance under and around solar panels
- Test forages and forage mixes at Badgervoltaics site in Kegonsa
- Provide recommendations on forages for agrivoltaics
- Work with solar developers to design more solar grazing-ready sites

GRATT N LAB

LANDSCAPE ECOLOGY OF INSECTS

Claudio Gratton Department of Entomology University of Wisconsin - Madison

Conservation of beneficial insects in agricultural landscapes

Effects of management and restoration on pollinators and ecosystem services

Prof. Mike Wagner Department of Mechanical Engineering Energy Systems Optimization Lab Solar Energy Laboratory

-Develop simulation tools to accurately predict energy system behaviors over a time horizon

-Modelling of complex optical and thermal systems

-Optimization methodologies to improve energy system efficiency, lifetime, costeffectiveness, and reliability.

Dr. Arganthaël Berson Department of Mechanical Engineering Solar Energy Laboratory